Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources
نویسندگان
چکیده
Cubic copper ferrite CuFe2O4 nanopowders have been synthesized via a hydrothermal route using industrial wastes. The synthesis conditions were systematically studied using statistical design (Box–Behnken Program) and the optimum conditions were determined. The results revealed that single phase of cubic copper ferrite powders can be obtained at different temperatures from 100 to 200 C for times from 12 to 36 h with pH values 8–12. The crystallite size of the produced powders was in the range between 24.6 and 51.5 nm. The produced copper ferrite powders were appeared as a homogeneous pseudo-cubic-like structure. A high saturation magnetization (Ms 83.7 emu/g) was achieved at hydrothermal temperature 200 C for 24 h and pH 8. Photocatalytic degradation of the methylene blue dye using copper ferrite powders produced at different conditions was investigated. A good catalytic efficiency was 95.9% at hydrothermal temperature 200 C for hydrothermal time 24 h at pH 12 due to high surface area (118.4 m/g). 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
منابع مشابه
Green synthesis of magnetic copper ferrite nanoparticles using tragacanth gum as a biotemplate and their catalytic activity for the oxidation of alcohols
During this study, we report the green synthesis of magnetic copper ferrite nanoparticles using tragacanth gum as a reducing and stabilizing agent by the sol-gel method. The green synthesized CuFe2O4 MNPs are characterized by powder X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), vibrating sample magnetometer (VSM) and scanning electron microscopy...
متن کاملGreen synthesis of magnetic copper ferrite nanoparticles using tragacanth gum as a biotemplate and their catalytic activity for the oxidation of alcohols
During this study, we report the green synthesis of magnetic copper ferrite nanoparticles using tragacanth gum as a reducing and stabilizing agent by the sol-gel method. The green synthesized CuFe2O4 MNPs are characterized by powder X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), vibrating sample magnetometer (VSM) and scanning electron microscopy...
متن کاملReverse chemical co-precipitation: An effective method for synthesis of BiFeO3 nanoparticles
The reverse co-precipitation method was used for synthesis of the pure phase multiferroic BiFeO3 (BFO) nanoparticles. Influence of different pH values on the microstructure and magnetic properties of the BFO nanopowders was investigated. Thermogravimetric-differential thermal analysis (TG-DTA) technique indicated that the optimal temperature for calcination is 550°C. The phase formation and the...
متن کاملTHE EFFECT OF DY- DOPING ON THE STRUCTURAL AND MAGNETIC PROPERTIES OF MN-ZN FERRITE NANOPARTICLES
Mn0.8Zn0.2Fe2-xDyxO4 (where x= 0, 0.025, 0.05, 0.075, 0.1) ferrite nanoparticles were synthesized by auto- combustion sol-gel method for the first time in this study. The effect of Dy-doping on the structural and magnetic properties of the produced specimens was examined using the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometery (VSM), and ...
متن کاملPhotocatalytic dye degradation properties of Zinc Copper Ferrites nanoparticles
In the present study, new multi-components spinel ferrite Zinc doped metallic ferrites are investigated. The synthesized compounds consisting of Zinc copper ferrite nanostructures were developed using the Co-precipitation technique. Powder X-ray diffraction pattern (XRD) confirms the formation of the spinel phase for all the samples. The lattice constant was studied through powder X-ray diffrac...
متن کامل